Input File Configuration

Integrator

The HiRep code uses a multilevel integrator and each integrator level has to be specified in the input file.

    integrator {
        level = 0
        type = o2mn
        steps = 10
    }

Variable

Description

level

unique integrator level (level 0 is the outermost level)

type

integrator type (see below)

steps

number of integration steps

The table below show the different integrators implemented in the HiRep code. The last column in the table show how many times the next integrator level will be called in each iteration of the given integrator.

Type

Description

Next level calls

lf

leap-frog integrator

1

o2mn

2nd order minimal norm (omelyan) integrator

2

o4mn

4th order minimal norm (omelyan) integrator

5

Plaquette gauge

This gauge monomial is the standard Wilson plaquette action.

S = -\frac{\beta}{N}\sum_{x,\mu>\nu} \textrm{Re}~\textrm{tr}(U_\mu(x)U_\nu(x+\hat{\mu})U_\mu^\dagger(x+\hat{\nu})U_\nu^\dagger(x))

The following example shows how to specify a gauge monomial in the input file.

    monomial {
        id = 0
        type = gauge
        beta = 2.0
        level = 0
    }

Variable

Description

id

unique monomial id

type

monomial type

beta

bare coupling for the gauge field

level

integrator level where the monomial force is evaluated

Lüscher-Weisz gauge

This gauge monomial is the Lüscher-Weisz (tree-level Symanzik) gauge action, including the 1\times1 plaquettes P_{\mu\nu} and the 1\times2 rectangular loops R_{\mu\nu}. The two coefficients below are related through c_0+8c_1=1 to ensure the correct continuum limit.

S = -\frac{\beta}{N}\sum_{x,\mu>\nu} c_0\textrm{Re}~\textrm{tr}[P_{\mu\nu}(x)] + c_1\textrm{Re}~\textrm{tr}[R_{\mu\nu}(x)+R_{\nu\mu}(x)]

Specify a gauge monomial in the input file as in the following example:

    monomial {
        id = 0
        type = lw_gauge
        c0 = 1.666667
        beta = 2.0
        level = 0
    }

Variable

Description

id

unique monomial id

type

monomial type

beta

bare coupling for the gauge field

c0

coefficient in front of the plaquette term

level

integrator level where the monomial force is evaluated

HMC Parameters

The HMC monomial is the standard term for simulating two mass degenerate fermions.

S = \phi^\dagger(D^\dagger D)^{-1}\phi\,,

corresponding to the following input file configurations with example parameters:

    monomial {
        id = 1
        type = hmc
        mass = -0.750
        mt_prec = 1e-14
        force_prec = 1e-14
        mre_past = 5
        level = 1
    }

Variable

Description

id

unique monomial id

type

monomial type

mass

bare fermion mass

mt_prec

inverter precision used in the Metropolis test

force_prec

inverter precision used when calculating the force

mre_past

number of past solutions used in the chronological inverter

level

integrator level where the monomial force is evaluated

Twisted Mass

In this monomial the twisted mass is added before the Dirac operator has been even/odd preconditioned. Specify as follows:

    monomial {
        id = 1
        type = tm
        mass = -0.750
        mu = 0.1
        mt_prec = 1e-14
        force_prec = 1e-14
        mre_past = 5
        level = 1
    }

Variable

Description

id

unique monomial id

type

monomial type

mass

bare fermion mass

mu

bare twisted mass

mt_prec

inverter precision used in the Metropolis test

force_prec

inverter precision used when calculating the force

mre_past

number of past solutions used in the chronological inverter

level

integrator level where the monomial force is evaluated

Twisted Mass Alternative

In this monomial the twisted mass is added after the Dirac operator has been even-odd preconditioned.

    monomial {
        id = 1
        type = tm_alt
        mass = -0.750
        mu = 0.1
        mt_prec = 1e-14
        force_prec = 1e-14
        mre_past = 5
        level = 1
    }

Variable

Description

id

unique monomial id

type

monomial type

mass

bare fermion mass

mu

bare twisted mass

mt_prec

inverter precision used in the Metropolis test

force_prec

inverter precision used when calculating the force

mre_past

number of past solutions used in the chronological inverter

level

integrator level where the monomial force is evaluated

Hasenbusch

The Hasenbusch term is a mass preconditioned term, used in connection with an HMC monomial.

S = \phi^\dagger\left(\frac{D^\dagger D}{(D+\Delta m)^\dagger (D+\Delta m)}\right)\phi

    monomial {
        id = 1
        type = hasenbusch
        mass = -0.750
        dm = 0.1
        mt_prec = 1e-14
        force_prec = 1e-14
        mre_past = 2
        level = 0
    }

Variable

Description

id

unique monomial id

type

monomial type

mass

bare fermion mass

dm

shift in the bare mass

mt_prec

inverter precision used in the Metropolis test

force_prec

inverter precision used when calculating the force

mre_past

number of past solutions used in the chronological inverter

level

integrator level where the monomial force is evaluated

TM Hasenbusch

To include a Hasenbusch monomial with even-odd preconditioned twisted mass, adjust starting from the following template parameters

    monomial {
        id = 1
        type = hasenbusch_tm
        mass = -0.750
        mu = 0
        dmu = 0.1
        mt_prec = 1e-14
        force_prec = 1e-14
        mre_past = 2
        level = 0
    }

Variable

Description

id

unique monomial id

type

monomial type

mass

bare fermion mass

mu

twisted mass

dmu

shift in the twisted mass

mt_prec

inverter precision used in the Metropolis test

force_prec

inverter precision used when calculating the force

mre_past

number of past solutions used in the chronological inverter

level

integrator level where the monomial force is evaluated

TM Hasenbusch Alternative

For a twisted even-odd preconditioned operator use the type hasenbusch_tm_alt.

    monomial {
        id = 1
        type = hasenbusch_tm_alt
        mass = -0.750
        mu = 0
        dmu = 0.1
        mt_prec = 1e-14
        force_prec = 1e-14
        mre_past = 2
        level = 0
    }

Variable

Description

id

unique monomial id

type

monomial type

mass

bare fermion mass

mu

bare twisted mass

dmu

shift in the twisted mass

mt_prec

inverter precision used in the Metropolis test

force_prec

inverter precision used when calculating the force

mre_past

number of past solutions used in the chronological inverter

level

integrator level where the monomial force is evaluated

RHMC

The RHMC monomial uses a rational approximation to simulate an odd number of mass degenerate fermions.

S = \phi^\dagger(D^\dagger D)^{-n/d}\phi

Include this in the input file using the type rhmc. One further needs to specify numerator and denominator fractions in the rational approximation.

    monomial {
        id = 1
        type = rhmc
        mass = -0.750
        n = 1
        d = 2
        mt_prec = 1e-14
        md_prec = 1e-14
        force_prec = 1e-14
        level = 0
    }

Variable

Description

id

unique monomial id

type

monomial type

mass

bare fermion mass

n

fraction numerator

d

fraction denominator

mt_prec

inverter precision used in the Metropolis test

md_prec

precision of the rational approximation

force_prec

inverter precision used when calculating the force

level

integrator level where the monomial force is evaluated

Chronological Inverter

When using the chronological inverter the force precision should be 10^{-14} or better to ensure reversibility in the algorithm. Further, masses given in monomials should include the mass shift.